Inferring somatic mutation rates using the stop-enhanced green fluorescent protein mouse.
نویسندگان
چکیده
A new method is developed for estimating rates of somatic mutation in vivo. The stop-enhanced green fluorescent protein (EGFP) transgenic mouse carries multiple copies of an EGFP gene with a premature stop codon. The gene can revert to a functional form via point mutations. Mice treated with a potent mutagen, N-ethyl-N-nitrosourea (ENU), and mice treated with a vehicle alone are assayed for mutations in liver cells. A stochastic model is developed to model the mutation and gene expression processes and maximum-likelihood estimators of the model parameters are derived. A likelihood-ratio test (LRT) is developed for detecting mutagenicity. Parametric bootstrap simulations are used to obtain confidence intervals of the parameter estimates and to estimate the significance of the LRT. The LRT is highly significant (alpha < 0.01) and the 95% confidence interval for the relative effect of the mutagen (the ratio of the rate of mutation during the interval of mutagen exposure to the rate of background mutation) ranges from a minimum 200-fold effect of the mutagen to a maximum 2000-fold effect.
منابع مشابه
Abrupt Onset of Mutations in a Developmentally Regulated Gene during Terminal Differentiation of Post-Mitotic Photoreceptor Neurons in Mice
For sensitive detection of rare gene repair events in terminally differentiated photoreceptors, we generated a knockin mouse model by replacing one mouse rhodopsin allele with a form of the human rhodopsin gene that causes a severe, early-onset form of retinitis pigmentosa. The human gene contains a premature stop codon at position 344 (Q344X), cDNA encoding the enhanced green fluorescent prote...
متن کاملIncreased transcription levels induce higher mutation rates in a hypermutating cell line.
Somatic hypermutation, in addition to V(D)J recombination, is the other major mechanism that generates the vast diversity of the Ab repertoire. Point mutations are introduced in the variable region of the Ig genes at a million-fold higher rate than in the rest of the genome. We have used a green fluorescent protein (GFP)-based reversion assay to determine the role of transcription in the mutati...
متن کاملIn vitro Labeling of Neural Stem Cells with Poly-L-Lysine Coated Super Paramagnetic Nanoparticles for Green Fluorescent Protein Transfection
Background: The magnetic nanoparticle-based transfection method is a relatively new technique for delivery of functional genes to target tissues. We aimed to evaluate the transfection efficiency of rat neural stem cell (NSC) using poly-L-lysine hydrobromide (PLL)-coated super paramagnetic iron oxide nanoparticles (SPION). Methods: The SPION was prepared and coated with PLL as transfection agent...
متن کاملGenetically Engineered Mesenchymal Stem Cells Stably Expressing Green Fluorescent Protein
Objective(s) Mesenchymal stem cells (MSCs) are nonhematopoietic stromal cells that are capable of differentiating into and contribute to the regeneration of mesenchymal tissues. Human mesenchymal stem cells (hMSCs) are ideal targets in cell transplantation and tissue engineering. Enhanced green fluorescent protein (EGFP) has been an important reporter gene for gene therapy. The aim of this stu...
متن کاملActivation of EGFP expression by Cre-mediated excision in a new ROSA26 reporter mouse strain.
Reporter mouse strains are important tools for monitoring Cre recombinase-mediated excision in vivo. In practice, excision may be incomplete in a given population due to threshold level or variegated expression of Cre. Hence, it is desirable in many experimental contexts to isolate cells that have undergone excision to assess the consequences of gene ablation. To generate alternative reporter m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 177 1 شماره
صفحات -
تاریخ انتشار 2007